Synthesis of Achiral α,α-Bis(aminomethyl)-β-alanines and Their Use in the Preparation of Branched β-Peptide Conjugates ofN-2-Alkyl-1,2,3,4-tetrahydroisoquinolines on Solid Support

Author(s):  
Petri Heinonen ◽  
Jaana Rosenberg ◽  
Harri Lönnberg
2017 ◽  
Vol 53 (21) ◽  
pp. 3086-3089 ◽  
Author(s):  
My Linh Tong ◽  
Florian Huber ◽  
Estelle S. Taghuo Kaptouom ◽  
Torsten Cellnik ◽  
Stefan F. Kirsch

A concept for site-selective acylation is presented, using substrate-optimized DMAP–peptide conjugates on a solid support.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Marta Kowalska ◽  
Dominik Popiel ◽  
Martyna Walter ◽  
Remigiusz Bąchor ◽  
Monika Biernat ◽  
...  

Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.


2019 ◽  
Author(s):  
Jiang Wang ◽  
Brian P. Cary ◽  
Peyton Beyer ◽  
Samuel H. Gellman ◽  
Daniel Weix

A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, with over 40 examples presented, including larger fragments and the 20-mer peptide Exendin(9-39) on solid support.


2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.


Sign in / Sign up

Export Citation Format

Share Document